2024-05-05-Free Range Programming

The Power of PEG
Appendix - See Also

The Power of PEG

PEG - and my favourite OhmJS - can match patterns in text in ways that CFGs
can’t.

To demonstrate, here’s a snippet of code. Don’t worry about what the code says,
just notice that it begins with

def Das2json

And ends with

return _r.return_string_pop ()

| don’t care about all of the stuff in between.

def Das2json (_r):
_r.push_new_string ()
_r.begin_breadcrumb ("Das2json")
XML (_r)
_r.append_returned_string ()
Spaces (_r)
_r.append_returned_string ()
_r.need (_r.endchar ())
_r.end_breadcrumb ("Das2json")
return _r.return_string_pop ()

Using a CFG-based parser, | would need to write out, in detail, a grammar for all
of the stuff in between the beginning and the ending phrases.

With OhmdJS, though, | can skip over the stuff in the middle and just match for the
beginning and the ending phrases.

Below is an experimental OhmJS grammar that matches the beginning and
ending phrases without making me write a grammar for all of the stuff in between.
It’s kinda like REGEX, only more powerful:

defname {
defName = "def" spaces name spaces through<"return _r.return_string_pop ()">
through<s> = (~s any)+ s
name = letter alnumx ~alnum

b

[AON J (53 | & TODO (April 15, 2024) - Kinopio X | Ohm Editor X |+ v

& = G O 8 https://ohmis.org/editor] w ® & =
@ Getting Started @) Magnetic Energy to ... @) Inbox (258) - pault0... @) Inbox (2) - pault095... M Inbox (1,131) - guita... > [other Bookmarks
Grammar [local storage] v Saved : Parse

defname { def D a s 2 i s o n (

defName = "def" spaces name spaces through<'return _r.return_st
through<s> = (~s any)+ s
name = letter alnum* ~alnum “"def" spaces — epaces
oo letter atnume
upper alnum alnum alnum alnum alnum alnum alnum any any a
letter letter digit 1letter letter letter letter
9" lower lower lower lower

. lower lower "0"

alnum (an alpha-numeric character) = letter

| digit
any (any character) = /% primitive rule x*/
letter (a letter) = lower

| upper

| unicodeLtmo
spaces = spacex

EXAMPLES 4 v

I def Das2json (_r): _r.push_new_string ().. defname - (default) ok
Edit example Done

Start rule: | defname » (default) v]

def Das2json (_r):
_r.push_new_string ()
_r.begin_breadcrumb ("Das2json")

XML (_r)

_r.append_returned_string ()

Spaces (_r)

_r.append_returned_string () [J Explain parse
_r.need (_r.endchar ()) [] Show spaces
_r.end_breadcrumb ("Das2json")

return _r.return_string_pop () @auu

Would | use this in production code? No.

Would | use this in development code? Yes.

Appendix - See Also

See Also

References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://quitarvydas.qgithub.io/

Blog https://publish.obsidian.md/programmingsimplicity

Videos https://www.youtube.com/@programmingsimplicity2980

[see playlist “programming simplicity”]

Discord https://discord.gg/Jix62ypR (Everyone welcome to join)

X (Twitter) @paul_tarvydas

More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	The Power of PEG
	Appendix - See Also

